Article ID Journal Published Year Pages File Type
865115 Procedia IUTAM 2013 9 Pages PDF
Abstract

This paper develops a mesoscale finite element method for realistic modeling of complex cohesive fracture in asphalt mixture with a given gradation. A random aggregate generation and packing algorithm is employed to create 2D and 3D heterogeneous asphalt mixture specimens, and cohesive elements with tension/shear softening laws are inserted into both mastic and aggregate-mastic interfaces to simulate crack initiation and propagation. The nucleation and coalescence of microcracks and propagation of macrocracks in 2D and 3D specimens is realistically modeled in detail with a few important conclusions drawn. The effects of coarse aggregate distributions on performance of asphalt mixture are also evaluated.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)