Article ID Journal Published Year Pages File Type
865242 Sustainable Materials and Technologies 2015 5 Pages PDF
Abstract

Demonstrating a credible and acceptable way to safely recycle ‘used’ nuclear fuel will clear a socially acceptable pathway for nuclear fission to be a major low-carbon energy source for this century. Here we advocate for an accelerated timetable for commercial demonstration of Generation IV nuclear technology, via construction of a prototype metal-fueled fast neutron reactor and associated 100 t/year pyroprocessing facility to convert and recycle spent fuel (routinely mischaracterized as “nuclear waste”) that has accumulated from decades of light-water reactor use. Based on the pioneering research and development done during the ‘Integral Fast Reactor’ (IFR) program at Argonne National Laboratory,1 a number of synergistic design choices are recommended: (a) a pool-type sodium-cooled reactor; (b) metal fuel based on a uranium–plutonium–zirconium alloy, and (c) recycling using electrorefining and pyroprocessing, thereby enabling the transmutation and repeated re-use of the actinides in the reactor system. We argue that alternative technology options for the coolant, fuel type and recycling system, while sometimes possessing individually attractive features, are challenging to combine into a sufficiently competitive overall system. A reactor blueprint that embodies these key design features, the General Electric-Hitachi 380 MWe PRISM,2 based on the IFR, is ready for a commercial-prototype demonstration. A two-pronged approach for completion by 2020 could progress by a detailed design and demonstration of a 100 t/year pyroprocessing facility for conversion of spent oxide fuel from light-water reactors3 into metal fuel for fast reactors, followed by construction of a prototype PRISM as a commercial-scale demonstration plant, with an initial focus on secure disposition of separated plutonium stocks. Ideally, this could be achieved via an international collaboration. Several countries have expressed great interest in such collaboration. Once demonstrated, this prototype would provide an international test facility for any concept improvements. It is expected to achieve significant advances in reactor safety, reliability, fuel resource sustainability, management of long-term waste, improved proliferation resistance, and economics.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , ,