Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
865697 | Tsinghua Science & Technology | 2008 | 9 Pages |
Abstract
The two important features of self-organizing maps (SOM), topological preservation and easy visualization, give it great potential for analyzing multi-dimensional time series, specifically traffic flow time series in an urban traffic network. This paper investigates the application of SOM in the representation and prediction of multi-dimensional traffic time series. First, SOMs are applied to cluster the time series and to project each multi-dimensional vector onto a two-dimensional SOM plane while preserving the topological relationships of the original data. Then, the easy visualization of the SOMs is utilized and several exploratory methods are used to investigate the physical meaning of the clusters as well as how the traffic flow vectors evolve with time. Finally, the k-nearest neighbor (kNN) algorithm is applied to the clustering result to perform short-term predictions of the traffic flow vectors. Analysis of real world traffic data shows the effectiveness of these methods for traffic flow predictions, for they can capture the nonlinear information of traffic flows data and predict traffic flows on multiple links simultaneously.
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
Yudong (éç
ä¸), Yi (å¼ æ¯
), Jianming (è¡åæ),