Article ID Journal Published Year Pages File Type
866086 Tsinghua Science & Technology 2006 8 Pages PDF
Abstract
A mathematical model is presented for the charging-up process in an air-entrapped pipeline with moving boundary conditions. A coordinate transformation technique is employed to reduce fluid motion in time-dependent domains to ones in time-independent domains. The nonlinear hyperbolic partial differential equations governing the unsteady motion of fluid combined with an equation for transient shear stress between the pipe wall and the flowing fluid are solved by the method of lines. Results show that ignoring elastic effects overestimates the maximum pressure and underestimates the maximum front velocity of filling fluid. The peak pressure of the entrapped air is sensitive to the length of the initial entrapped air pocket.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, ,