Article ID Journal Published Year Pages File Type
866595 Biosensors and Bioelectronics 2014 5 Pages PDF
Abstract

•A high sensitive fluoroimmunoassay based on a dual amplification was developed for detection of protein.•The strategy exhibited ultrahigh sensitivity and potential for clinical application.•The method could be extended to detect a wide range of trace proteins.

An ultrasensitive fluorescence method for determination of protein is developed based on hybridization chain reaction (HCR). In this assay, the streptavidin-magnetic nanobeads were conjugated to biotinylated initiators and biotinylated anti-IgG. In the presence of human IgG, the magnetic nanobeads were fixed on the substrate and the carried initiators propagated the chain reaction of hybridization to form the nicked polymers. Because the nanobead probe carries with a large number of oligonucleotides per protein binding event, there is obvious amplification in the nicked polymers. Then, numerous SYBR Green I molecules were intercalated into the grooves of the long dsDNA polymers, generating a substantially apparent increase in the corresponding fluorescence intensity. With HCR amplification and magenetic nanobead to preamplify the fluorescence signal and reduce the background signal, the detection limit of this assay was 14 aM. Compared with the reported protein detection methods, our method exhibited ultrahigh sensitivity. In addition, the proposed method possessed excellent selectivity and low matrix effect. What is more, the assay was also studied for clinical application in human serum with a satisfactory and reliable result.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , ,