Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
867476 | Biosensors and Bioelectronics | 2012 | 6 Pages |
A label-free biosensor for electrical detection of cardiac troponin I (cTnI), a highly sensitive and selective biomarker of acute myocardial infarction (AMI), is demonstrated using silicon nanowire (SiNW) based field-effect transistors (FETs). The FET devices were fabricated by a complementary metal oxide semiconductor (CMOS) compatible top-down approach to define the SiNW followed by tetramethylammonium hydroxide (TMAH) wet etching. Electrical characterizations of the SiNW FET revealed an ambipolar conduction characteristic with an on/off ratio of 105–106. CTnI monoclonal antibodies were then covalently immobilized on the SiNW surfaces. By integrating with a homemade biosensor measurement system, the biosensor exhibited rapid and sensitive response to cTnI proteins. The current response showed a nature of logarithm relationship against the cTnI concentration from 46 ng/mL down to 0.092 ng/mL. Moreover, an anti-interference capability of the fabricated biosensor was also assessed. By utilizing the top-down fabrication method, this work provides an efficient way for the cTnI proteins detection with an enormous potential of mass-production, which definitely facilitate the practical applications.
► Si nanowire FET as label-free cardiac troponin I biosensor for AMI diagnosis. ► FET is fabricated by CMOS-compatible top-down approach with mass-production feature. ► Biosensor shows rapid, wide linear range response and good anti-interference ability.