Article ID Journal Published Year Pages File Type
867717 Biosensors and Bioelectronics 2011 7 Pages PDF
Abstract

A bifunctional electro-optical nanoprobe with integrated nanoring electrode and optical nanotip was fabricated and investigated to simultaneously detect both electrical and optical signals in real-time with high spatial resolution. Concurrent measurements of the oxidant generation and the intracellular antioxidant levels in single cells correlate the stronger oxidant generation with an altered initial antioxidant response in the breast cancer cells in comparison to the normal ones suggesting that the cell malignancy is associated with the strength of oxidative stress, and the higher antioxidant level may be the cause of the drug resistance. While the optical detection indicates the fluctuation of the intracellular redox homeostasis, the chronoamperometric signals allow quantitative real-time detection of the H2O2 release and decay. Furthermore, the nanoscale probe enables localized simultaneous detections thus discovering that activated enzymes responsible for the oxidative stress target at specific membrane regions. This method promises applications in study of the dynamics of important physiological processes, and provides the opportunity to unravel the interplay of various signaling pathways.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , ,