Article ID Journal Published Year Pages File Type
867766 Biosensors and Bioelectronics 2011 5 Pages PDF
Abstract

One of the key goals of enzymatic biofuel cells research has been the development of a fully enzymatic biofuel cell that operates under a continuous flow-through regime. Here, we present our work on achieving this task. Two NAD+-dependent dehydrogenase enzymes; malate dehydrogenase (MDH) and alcohol dehydrogenase (ADH) were independently coupled with poly-methylene green (poly-MG) catalyst for biofuel cell anode fabrication. A fungal laccase that catalyzes oxygen reduction via direct electron transfer (DET) was used as an air-breathing cathode. This completes a fully enzymatic biofuel cell that operates in a flow-through mode of fuel supply polarized against an air-breathing bio-cathode. The combined, enzymatic, MDH-laccase biofuel cell operated with an open circuit voltage (OCV) of 0.584 V, whereas the ADH-laccase biofuel cell sustained an OCV of 0.618 V. Maximum volumetric power densities approaching 20 μW cm−3 are reported, and characterization criteria that will aid in future optimization are discussed.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , ,