Article ID Journal Published Year Pages File Type
868160 Biosensors and Bioelectronics 2011 5 Pages PDF
Abstract

Ferrocene-attached polymyxin B (PMB-Fc) was prepared by the reaction of polymyxin B with ferrocenoyl chloride in a toluene/pyridine mixture. An electrochemical detection of lipopolysaccharide (LPS) was carried out using a combination of PMB-Fc and an enzyme-modified electrode constructed from a glassy carbon electrode modified with a bovine serum albumin membrane containing glucose oxidase. The ferrocene units of the PMB-Fc molecules were oxidized on the electrode, and then reduced to the original neutral form by a glucose oxidase-catalyzed reaction in the presence of d-glucose. The consumption/regeneration cycle for PMB-Fc resulted in a chemically amplified current response. The current response for PMB-Fc decreased in association with its complexation with LPS, and the magnitude of this current decrease caused by LPS was also amplified by the recycling process. The enzyme-modified electrode exhibited a rapid response of 5 min for LPS with the detection limit as low as 50 ng ml−1. Further, the addition of d-solbitol or poly(vinyl alcohol) of high concentration over 1 mg ml−1 substantially induced no response, and three kinds of LPS from different strains exhibited similar magnitudes of current response for the same concentrations; these results suggest the advantages of this detection system for practical applications. Ferrocene-attached colistin, an analogue of PMB-Fc, was also effective for the LPS detection using the glucose oxidase-modified electrode.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , ,