Article ID Journal Published Year Pages File Type
868412 Biosensors and Bioelectronics 2010 7 Pages PDF
Abstract

Electrically active magnetic (EAM) nanoparticles, consisting of aniline monomer polymerized around gamma iron(III) oxide (γ-Fe2O3) cores, serve as the basis of a direct-charge transfer biosensor developed for detection of surface glycoprotein hemagglutinin (HA) from the Influenza A virus (FLUAV) H5N1 (A/Vietnam/1203/04). H5N1 preferentially binds α2,3-linked host glycan receptors. EAM nanoparticles were immunofunctionalized with antibodies against target HA. Glycans preincubated with HA in 10% mouse serum were incubated with anti-HA–EAM complexes. The anti-HA–EAM complexes effectively acted as immunomagnetic separator of HA from mouse serum matrix. EAM nanoparticles served as the biosensor transducer for cyclic voltammetry measurements. The polyaniline was made electrically active by hydrochloric acid doping. Experimental results indicate that the biosensor is able to detect recombinant H5 HA at 1.4 μM in 10% mouse serum, with high specificity for H5 as compared to H1 (H1N1 A/South Carolina/1/18). This novel design applies EAM nanoparticles in a sensitive, specific, affordable, and easy-to-use biosensor with applications in disease monitoring and biosecurity.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , ,