Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8686881 | NeuroImage | 2018 | 49 Pages |
Abstract
Sentence comprehension requires the encoding of phrases and their relationships into working memory. To date, despite the importance of neural oscillations in language comprehension, the neural-oscillatory dynamics of sentence encoding are only sparsely understood. Although oscillations in a wide range of frequency bands have been reported both for the encoding of unstructured word lists and for working-memory intensive sentences, it is unclear to what extent these frequency bands subserve processes specific to the working-memory component of sentence comprehension or to general verbal working memory. In our auditory electroencephalography study, we isolated the working-memory component of sentence comprehension by adapting a subsequent memory paradigm to sentence comprehension and assessing oscillatory power changes during successful sentence encoding. Time-frequency analyses and source reconstruction revealed alpha-power desynchronization in left-hemispheric language-relevant regions during successful sentence encoding. We further showed that sentence encoding was more successful when source-level alpha-band desynchronization aligned with computational measures of syntactic-compared to lexical-semantic-difficulty. Our results are a preliminary indication of a domain-general mechanism of cortical disinhibition via alpha-band desynchronization superimposed onto the language-relevant cortex, which is beneficial for encoding sentences into working memory.
Related Topics
Life Sciences
Neuroscience
Cognitive Neuroscience
Authors
Benedict Vassileiou, Lars Meyer, Caroline Beese, Angela D. Friederici,