Article ID Journal Published Year Pages File Type
8686904 NeuroImage 2018 10 Pages PDF
Abstract
Using fMRI and multivariate analyses we sought to understand the neural representations of articulated body shape and local kinematics in biological motion. We show that in addition to a cortical network that includes areas identified previously for biological motion perception, including the posterior superior temporal sulcus, inferior frontal gyrus, and ventral body areas, the ventral lateral nucleus, a presumably motoric thalamic area is sensitive to both form and kinematic information in biological motion. Our findings suggest that biological motion perception is not achieved as an end-point of segregated cortical form and motion networks as often suggested, but instead involves earlier parts in the visual system including a subcortical network.
Related Topics
Life Sciences Neuroscience Cognitive Neuroscience
Authors
, , , , ,