Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8686956 | NeuroImage | 2018 | 53 Pages |
Abstract
The blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal is commonly used to assess functional connectivity across brain regions, particularly in the resting state (rs-fMRI). However, the BOLD fMRI signal is not merely a representation of neural activity, but a combination of neural activity and vascular response. These aspects of the BOLD signal are easily influenced by systemic physiology, potentially biasing BOLD-based functional connectivity measurements. In this work, we focus on the following physiological modulators of the BOLD signal: cerebral blood flow (CBF), venous blood oxygenation, and cerebrovascular reactivity (CVR). We use simulations and experiments to examine the relationship between the physiological parameters and rs-fMRI functional connectivity measurements in three resting-state networks: default mode network, somatosensory network and visual network. By using the general linear model, we demonstrate that physiological modulators significantly impact functional connectivity measurements in these regions, but in a manner that depends on the interplay between signal- and noise-driven correlations. Moreover, we find that the physiological effects vary by brain region and depend on the range of physiological conditions probed; the associations are more complex than previously reported. The results confirm that it is important to account for the effect of physiological modulators when comparing resting-state fMRI metrics. We note that such modulatory effects may be amplified by disease conditions, which will warrant future investigations.
Keywords
Related Topics
Life Sciences
Neuroscience
Cognitive Neuroscience
Authors
Powell P.W. Chu, Ali M. Golestani, Jonathan B. Kwinta, Yasha B. Khatamian, J. Jean Chen,