Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8687219 | NeuroImage | 2018 | 25 Pages |
Abstract
Interestingly, high field studies have also brought to light that not only the makeup of tissues affects MRI susceptibility contrast, but that also a tissue's sub-voxel structure at scales all the way down to the molecular level plays an important role as well. In this review, various ways will be discussed by which sub-voxel structure can affect the MRI signal in general, and magnetic susceptibility in particular, sometimes in a complex fashion. In the light of this complexity, it appears likely that accurate, brain-wide quantification of iron will require the combination of multiple contrasts that may include diffusion and magnetization transfer information with susceptibility-weighted contrast. On the other hand, this complexity also offers opportunities to use magnetic susceptibility contrast to inform about specific microstructural aspects of brain tissue. Details and several examples will be presented in this review.
Related Topics
Life Sciences
Neuroscience
Cognitive Neuroscience
Authors
Jeff H. Duyn,