Article ID Journal Published Year Pages File Type
8687222 NeuroImage 2018 22 Pages PDF
Abstract
The continued drive towards MRI scanners operating at increasingly higher main magnetic fields is primarily motivated by the maxim that more teslas mean more signal and lead to better images. This promise of increased signal, which cannot easily be achieved in other ways, encourages efforts to overcome the inextricable technical challenges which accompany this endeavor. Unlike for many applications, however, diffusion imaging is not currently able to directly reap these potential signal gains - at the time of writing it seems fair to say that, for matched gradient and RF hardware, the majority of diffusion images acquired at 7 T, while comparable in quality to those achievable at 3 T, do not demonstrate a clear advantage over what can be obtained at lower field. This does not mean that diffusion imaging at UHF is not a worthwhile pursuit - but more a reflection of the fact that the associated challenges are manifold - and converting the potential of higher field strengths into 'better' diffusion imaging is by no means a straightforward task. This article attempts to summarize the specific reasons that make diffusion imaging at UHF more complicated than one might expect, and to highlight the range of developments that have already been made which have enabled diffusion images of excellent quality to be acquired at 7 T.
Related Topics
Life Sciences Neuroscience Cognitive Neuroscience
Authors
,