Article ID Journal Published Year Pages File Type
868753 Biosensors and Bioelectronics 2010 6 Pages PDF
Abstract

We demonstrated herein a newly developed photoelectrochemical cell-sensor for the determination of SMMC-7721 human hepatoma carcinoma cells (SMMC-7721 cells) by using a photosensitive CdS-polyamidoamine (G4) nano-composite film (CdS-PAMAM). The film was generated by electrodeposition method. The presence of PAMAM in the film eliminated the surface defects of CdS nanoparticles and therefore resulted in a greatly enhanced photocurrent and a reduced dark current. In the presence of the electron donor ascorbic acid (AA), the photoexcitation of this modified electrode potentiostated at 0 V versus Ag/AgCl led to an anodic photocurrent. As a result of the covalent coupling reactions, a layer of concanavalin A (ConA) was firmly bound to the functionalized CdS-PAMAM film via glutaraldehyde bridges. The resulting modified electrodes were tested as sensors for SMMC-7721 cell capture and detection via affinity interactions between ConA and mannosyl groups on cell surface. The cell concentration was measured from 5.0 × 103 to 1.0 × 107 cells mL−1 through the decrease in photocurrent intensity resulting from its specific binding onto the photosensitive film, the detection limit being 5.0 × 103 cells mL−1.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , ,