Article ID Journal Published Year Pages File Type
868850 Biosensors and Bioelectronics 2009 5 Pages PDF
Abstract

Multi-walled carbon nanotubes (MWCNTs) were synthesized on platinum plate electrodes by the chemical vapor deposition (CVD) method. From the results of X-ray photoelectron spectroscopy and voltammetric investigation, the iron nanoparticles used as a catalyst for the MWCNT synthesis were enclosed with MWCNTs. The MWCNTs synthesized on the Pt plate (MWCNTs/Pt) electrode were immediately immersed into solutions of d-fructose dehydrogenase (FDH) to immobilize the enzyme onto the MWCNTs/Pt electrode surfaces. After the FDH was immobilized onto the MWCNTs/Pt electrode, a well-defined catalytic oxidation current based on FDH was observed from ca. −0.15 V (versus Ag/AgCl/sat’d KCl), which was close to the redox potential of heme c as a prosthetic group of FDH. From an analysis of a plot of the catalytic current versus substrate, the calibration range for the fructose concentration was up to ca. 40 mmol dm−3, and the apparent Michaelis–Menten constant was evaluated to be 11 ± 1 mmol dm−3.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,