Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8688686 | NeuroImage: Clinical | 2017 | 12 Pages |
Abstract
All results presented are for the 102 scans in the validation set. The median DSI for each model was: 0.89 (logistic), 0.885 (LASSO), 0.88 (GAM), and 0.899 (random forest). Using the random forest results in a slightly higher median DSI compared to the other models. After Bonferroni correction, the hypothesis of equality of median DSI was rejected only when comparing the random forest DSI to the DSI from the logistic (p < 0.001), LASSO (p < 0.001), or GAM (p < 0.001) models. In practical terms the difference between the random forest and the logistic regression is quite small. The correlation (95% CI) between the volume from manual segmentation and the predicted volume was 0.93 (0.9,0.95) for the random forest model. These results indicate that random forest approach can achieve accurate segmentation of ICH in a population of patients from a variety of imaging centers. We provide an R package (https://github.com/muschellij2/ichseg) and a Shiny R application online (http://johnmuschelli.com/ich_segment_all.html) for implementing and testing the proposed approach.
Keywords
Related Topics
Life Sciences
Neuroscience
Biological Psychiatry
Authors
John Muschelli, Elizabeth M. Sweeney, Natalie L. Ullman, Paul Vespa, Daniel F. Hanley, Ciprian M. Crainiceanu,