Article ID Journal Published Year Pages File Type
868992 Biosensors and Bioelectronics 2008 6 Pages PDF
Abstract

We demonstrate the real-time on-chip detection and manipulation of single 1 μm superparamagnetic particles in solution, with the aim to develop a biosensor that can give information on biological function. Our chip-based sensor consists of micro-fabricated current wires and giant magneto resistance (GMR) sensors. The current wires serve to apply force on the particles as well as to magnetize the particles for on-chip detection. The sensitivity profile of the sensor was reconstructed by simultaneously measuring the sensor signal and the position of an individual particle crossing the sensor. A single-dipole model reproduces the measured sensitivity curve for a 1 μm bead. For a 2.8 μm bead the model shows deviations, which we attribute to the fact that the particle size becomes comparable to the sensor width. In the range between 1 and 10 particles, we observed a linear relationship between the number of beads and the sensor signal. The real-time detection and manipulation of individual particles opens the possibility to perform on-chip high-parallel single-particle assays.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,