Article ID Journal Published Year Pages File Type
869025 Biosensors and Bioelectronics 2009 5 Pages PDF
Abstract

A novel biosensor for glucose was prepared by immobilizing glucose oxidase (GOx) on nitrogen-doped carbon nanotubes (CNx-MWNTs) modified electrode. The CNx-MWNTs membrane showed an excellent electrocatalytic activity toward the reduction of O2 due to its diatomic side-on adsorption on CNx-MWNTs. The nitrogen doping accelerated the electron transfer from electrode surface to the immobilized GOx, leading to the direct electrochemistry of GOx. The biofunctional surface showed good biocompatibility, excellent electron-conductive network and large surface-to-volume ratio, which were characterized by scanning electron microscopy, contact angle and electrochemical impedance technique. The direct electron transfer of immobilized GOx led to stable amperometric biosensing for glucose with a linear range from 0.02 to 1.02 mM and a detection limit of 0.01 mM (S/N = 3). These results indicated that CNx-MWNTs are good candidate material for construction of the third-generation enzyme biosensors based on the direct electrochemistry of immobilized enzymes.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , ,