Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
869130 | Biosensors and Bioelectronics | 2009 | 6 Pages |
The direct electrocatalytic oxidation of glucose in alkaline medium at nanoscale nickel hydroxide modified carbon ionic liquid electrode (CILE) has been investigated. Enzyme free electro-oxidation of glucose have greatly been enhanced at nanoscale Ni(OH)2 as a result of electrocatalytic effect of Ni+2/Ni+3 redox couple. The sensitivity to glucose was evaluated as 202 μA mM−1 cm−2. From 50 μM to 23 mM of glucose can be selectively measured using platelet-like Ni(OH)2 nanoscale modified CILE with a detection limit of 6 μM (S/N = 3). The nanoscale nickel hydroxide modified electrode is relatively insensitive to electroactive interfering species such as ascorbic acid (AA), and uric acid (UA) which are commonly found in blood samples. Long-term stability, high sensitivity and selectivity as well as good reproducibility and high resistivity towards electrode fouling resulted in an ideal inexpensive amperometric glucose biosensor applicable for complex matrices.