Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
869418 | Biosensors and Bioelectronics | 2007 | 6 Pages |
Hepatitis B surface antibody (HBsAb) was immobilized to the surface of a gold electrode modified with cysteamine and colloidal gold as matrices to detect hepatitis B surface antigen (HBsAg). Differential pulse voltammetry (DPV) method was used for the investigation of the specific interaction between the immobilized HBsAb and HBsAg in solution, which was followed as a change of peak current in DPV with time. With the modified gold electrode, the differences in affinity of HBsAb with HBsAg at the temperatures of 37 and 40 °C were easily distinguished and the kinetic rate constants (kass and kdiss) and kinetic affinity constant K were determined from the curves of current versus time. In addition, the thermodynamic constants, ΔG, ΔH and ΔS, of the interaction at 37 °C were calculated, which were −56.65, −64.54 and −25.45 kJ mol−1, respectively.