Article ID Journal Published Year Pages File Type
869544 Biosensors and Bioelectronics 2008 4 Pages PDF
Abstract

We present the electrical detection of immunoglobulin G (IgGs) from human serum using a nanogap-based biosensor. The detection method is based on the capture of IgGs by a probe immobilized between gold nanoelectrodes of 30–90 nm spacing. The captured IgGs are further reacted with secondary antibodies labelled with gold nanoparticles (GNPs). Insertion of GNPs into the nanogap resulted in increasing the conductance through the nanogap. The use of a chip with 90 nanogaps enabled the calculation of a quality factor for the detection which, coupled with a non-linear regression analysis of the data, easily discriminated specific and differential capture of human antibodies by arrayed probes. We obtained a 500-fold higher quality factor with protein A compared to goat anti-murine antibodies. This method can be applied, through these proof-of-concept experiments, to the detection of protein–protein interactions in biological samples.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,