Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
869580 | Biosensors and Bioelectronics | 2009 | 6 Pages |
We find that the catalytic activity of gold nanoparticles (GNPs) on luminol-H2O2 chemiluminescence (CL) system is greatly enhanced after it is aggregated by 0.5 M NaCl. We use this observation to design a CL detection of DNA hybridization. It is based on that the single- and double-stranded oligonucleotides have different propensities to adsorb on GNPs in colloidal solution, and the hybridization occurred between the probe DNA and target DNA can result in aggregation of the GNPs, producing strong CL emission. In the assay, no covalent functionalization of the GNPs, the probe, or the target DNA is required. The assay, including hybridization and detection, occurs in homogenous solution. The detection limit of target DNA (3σ) was estimated to be as low as 1.1 fM. The sensitivity was increased more than 6 orders of magnitude over that of GNPs-based colorimetric method. The present CL method for DNA hybridization detection offers the advantages of being simple, cheap, rapid and sensitive.