Article ID Journal Published Year Pages File Type
869593 Biosensors and Bioelectronics 2009 6 Pages PDF
Abstract

An attractive biocomposite based on polycrystalline bismuth oxide (BiOx) film and polyphenol oxidase (PPO) was proposed for the construction of a mediator-free amperometric biosensor for phenolic compounds in environmental water samples. The phenolic biosensor could be easily achieved by casting the biocomposite on the surface of glassy carbon electrode (GCE) via the cross-linking step by glutaraldehyde. The laboratory-prepared bismuth oxide semiconductor was polymorphism. Its hydrophilicity provided a favorable microenvironment for retaining the biological activity of the immobilized protein. The parameters of the fabrication process and the various experimental variables for the enzyme electrode were optimized. The proposed PPO/BiOx biosensor provided a linear response to catechol over a concentration range of 4 × 10−9 M to 1.5 × 10−5 M with a dramatically developed sensitivity of 11.3 A M−1 cm−2 and a detection limit of 1 × 10−9 M based on S/N = 3. In addition, the PPO/BiOx biocomposite was characterized by scanning electron microscope (SEM), Fourier transform infrared spectra (FTIR) and rotating disk electrode voltammetry.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , ,