Article ID Journal Published Year Pages File Type
869836 Biosensors and Bioelectronics 2006 5 Pages PDF
Abstract

A portable and cost-effective technique to measure the dimethyl ether (DME) concentrations has been developed. It is based on an electrochemical principle measuring the oxidation current of DME at an applied potential of +0.2 V versus a Ag/AgCl reference electrode. Thick-film printing technique is used for the fabrication of this DME sensor, and platinum nanoparticles in the crystallite size of 5.5 nm are used for the modification of the working electrode surface. This modification enhances the sensor performance significantly leading to a higher sensitivity of the sensor comparing to bare platinum electrode. Evaluation and characterization of this sensor are carried out over the DME concentration range of 0–7% (v/v), and a linear relationship between sensor outputs and the DME concentrations with an average R2 of 0.996 exists. The reproducibility of the sensor is also very good. This electrochemically based DME sensor fabricated by thick-film screen printing technique and using the platinum nanoparticles to enhance its performance will be valuable and practical for the estimation of the airway mucosal blood flow.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,