Article ID Journal Published Year Pages File Type
870589 Biotechnology Reports 2015 8 Pages PDF
Abstract

Agro-residues were used as the substrate for the production of fibrinolytic enzyme in solid state fermentation. In this study, two-level full factorial design (25) and response surface methodology were applied to optimize a fermentation medium for the production of fibrinolytic enzyme from the marine isolate Shewanella sp. IND20. The 25 factorial design demonstrated that the physical factors (pH and moisture) and nutrient factors (trehalose, casein, and sodium dihydrogen phosphate) had significant effect on fibrinolytic enzyme production. Central composite design was employed to search for the optimal concentration of the three factors, namely moisture, pH, and trehalose, and the experimental results were fitted with a second-order polynomial model at 99% level (p < 0.0001). The optimized medium showed 2751 U/mL of fibrinolytic activity, which was 2.5-fold higher than unoptimized medium. The molecular weight of fibrinolytic enzyme was found to be 55.5 kDa. The optimum pH and temperature were 8.0 and 50 °C, respectively.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, ,