Article ID Journal Published Year Pages File Type
870643 Biotechnology Reports 2015 5 Pages PDF
Abstract

Enzymes require some flexibility for catalysis. Biotechnologists prefer stable enzymes but often this stabilization comes at the cost of reduced efficiency. Enzymes from thermophiles have low flexibility but poor catalytic rates. Enzymes from psychrophiles are less stable but show good catalytic rates at low temperature. In organic solvents enzymes perform poorly as the prior drying makes the enzyme molecules very rigid. Adding water or increasing reaction temperature improves flexibility and catalytic rates. In case of hydrolases, flexibility and enantioselectivity have interdependence. Understanding the complex role of protein flexibility in biocatalysis can help in designing biotechnological processes.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, ,