Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
870691 | Biotechnology Reports | 2014 | 6 Pages |
•A residue in active site which affects the optimum pH for catalysis was found.•A mutant with an extended optimum pH 7–9 was constructed.•The catalytic mechanism explains the extended optimum pH of the mutant.
Phenylalanine ammonia-lyase (RgPAL) from Rhodotorula glutinis JN-1 stereoselectively catalyzes the conversion of the l-phenylalanine into trans-cinnamic acid and ammonia, and was used in chiral resolution of dl-phenylalanine to produce the d-phenylalanine under acidic condition. However, the optimum pH of RgPAL is 9 and the RgPAL exhibits low catalytic efficiency at acidic side. Therefore, a mutant RgPAL with a lower optimum pH is expected. Based on catalytic mechanism and structure analysis, we constructed a mutant RgPAL-Q137E by site-directed mutagenesis, and found that this mutant had an extended optimum pH 7–9 with activity of 1.8-fold higher than that of the wild type at pH 7. As revealed by Friedel–Crafts-type mechanism of RgPAL, the improvement of the RgPAL-Q137E might be due to the negative charge of Glu137 which could stabilize the intermediate transition states through electrostatic interaction. The RgPAL-Q137E mutant was used to resolve the racemic dl-phenylalanine, and the conversion rate and the eeD value of d-phenylalanine using RgPAL-Q137E at pH 7 were increased by 29% and 48%, and achieved 93% and 86%, respectively. This work provides an effective strategy to shift the optimum pH which is favorable to further applications of RgPAL.