Article ID Journal Published Year Pages File Type
8716107 Journal of Investigative Dermatology 2018 32 Pages PDF
Abstract
Disturbance of the epidermal barrier by UVR is associated with the release of antimicrobial peptides and inflammatory cytokines for the purpose of a danger response. On the other hand, UVR causes immunosuppression via regulatory T cells (Treg) that limit the inflammatory reaction. The concurrent induction of antimicrobial peptides and Treg by UVR may represent a counter-regulatory mechanism in response to barrier disruption, preventing microbial superinfection and sensitization to contact allergens, respectively, both of which cross impaired epidermis more easily. Thus, using a model of murine contact hypersensitivity we examined if disruption of the epidermal barrier only initiates similar counter-regulatory mechanisms via the generation of Treg. Sensitization through tape-stripped skin induced a weaker contact hypersensitivity response than in control mice. This was due to the induction of antigen-specific Treg, as demonstrated in adoptive transfer and depletion experiments utilizing DEREG mice. Treg induction by tape stripping was linked to the expression of the alarmin IL-33, as blockade of IL-33 exacerbated contact hypersensitivity, whereas injection of IL-33 inhibited contact hypersensitivity and induced Treg. These results demonstrate that epidermal barrier disruption, in addition to danger signals, induces regulatory events that prevent exaggerated skin inflammation and that IL-33 appears to be critically involved in this process.
Related Topics
Health Sciences Medicine and Dentistry Dermatology
Authors
, , , ,