Article ID Journal Published Year Pages File Type
872032 Journal of Biomechanics 2014 7 Pages PDF
Abstract

An increased knee abduction angle during jump-landing has been identified as a risk factor for anterior cruciate ligament injuries. Activation of the hip abductors may decrease the knee abduction angle during jump-landing. The purpose of this study was to examine the effects of a resistance band on the internal hip abduction moment and gluteus medius activation during the pre-landing (100 ms before initial contact) and early-landing (100 ms after initial contact) phases of a jump–landing–jump task. Thirteen male and 15 female recreational athletes (age: 21.1±2.4 yr; mass: 73.8±14.6 kg; height: 1.76±0.1 m) participated in the study. Subjects performed jump–landing–jump tasks with or without a resistance band applied to their lower shanks. During the with-band condition, subjects were instructed to maintain their movement patterns as performing the jump-landing task without a resistance band. Lower extremity kinematics, kinetics, and gluteus medius electromyography (EMG) were collected. Applying the band increased the average hip abduction moment during pre-landing (p<0.001, Cohen׳s d (d)=2.8) and early-landing (p<0.001, d=1.5), and the average gluteus medius EMG during pre-landing (p<0.001, d=1.0) and early-landing (p=0.003, d=0.55). Applying the band decreased the initial hip flexion angle (p=0.028, d=0.25), initial hip abduction angle (p<0.001, d=0.91), maximum knee flexion angle (p=0.046, d=0.17), and jump height (p=0.004, d=0.16). Applying a resistance band provides a potential strategy to train the strength and muscle activation for the gluteus medius during jump-landing. Additional instructions and feedback regarding hip abduction, hip flexion, and knee flexion may be required to minimize negative changes to other kinematic variables.

Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , , ,