Article ID Journal Published Year Pages File Type
872286 Journal of Biomechanics 2012 6 Pages PDF
Abstract

This paper addresses the possible mechanism of stretch on cell electrochemical potential change, based on the physicochemical properties of cytoskeletal network. Synthetic polyelectrolyte gel was used as an experimental model of the cytoskeleton. Gel samples with different density of network cross linking were studied. Triangular axial deformations of samples were applied. Simultaneously, the electrochemical (Donnan) potential of the gel was measured between a micropipette electrode pinned into the swollen gel, and a reference electrode in the outer solution. We found that axial deformation shifts the gel potential toward depolarization. The extent of gel depolarization showed a close negative correlation with the Young modulus of the gel. We suggest that the underlying mechanism is likely to be a universal process of counterion adsorption on charged polymer filaments due to the decrease of distance between polymer filaments owing to gel elongation.

Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , , ,