Article ID Journal Published Year Pages File Type
872819 Journal of Biomechanics 2012 5 Pages PDF
Abstract

While advances in computational models of mechanical phenomena have made it possible to simulate dynamically complex problems in biomechanics, accurate material models for soft tissues, particularly brain tissue, have proven to be very challenging. Most studies in the literature on material properties of brain tissue are performed in shear loading and very few tackle the behavior of brain in compression. In this study, a viscoelastic constitutive model of bovine brain tissue under finite step-and-hold uniaxial compression with 10 s–1 ramp rate and 20 s hold time has been developed. The assumption of quasi-linear viscoelasticity (QLV) was validated for strain levels of up to 35%. A generalized Rivlin model was used for the isochoric part of the deformation and it was shown that at least three terms (C10, C01 and C11) are needed to accurately capture the material behavior. Furthermore, for the volumetric deformation, a two parameter Ogden model was used and the extent of material incompressibility was studied. The hyperelastic material parameters were determined through extracting and fitting to two isochronous curves (0.06 s and 14 s) approximating the instantaneous and steady-state elastic responses. Viscoelastic relaxation was characterized at five decay rates (100, 10, 1, 0.1, 0 s−1) and the results in compression and their extrapolation to tension were compared against previous models.

Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , ,