Article ID Journal Published Year Pages File Type
873050 Journal of Biomechanics 2011 6 Pages PDF
Abstract

Optimal performance of a dynamical pole vault process was modeled as a constrained nonlinear optimization problem. That is, given a vaulter’s anthropomorphic data and approach speed, the vaulter chose a specific take-off angle, pole stiffness and gripping height in order to yield the greatest jumping height compromised by feasible bar-crossing velocities. The optimization problem was solved by nesting a technique of searching an input-to-output mapping arising from the vaulting trajectory and a method of nonlinear sequential quadratic programming (SQP). It was suggested from the optimization results that the body’s weight has an important influence on the vaulting performance beside the vaulter’s height and approach speed; the less skilled vaulter should gradually adopt a longer pole to improve the performance.

Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , ,