Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
873393 | Journal of Biomechanics | 2011 | 5 Pages |
Variable friction tactile displays have been recently used to render virtual textures and gratings. Neural basis of perceptual mechanism of detection of edge-like features resulting in discrimination of virtual gratings during active touching these tactile actuators is studied using a finite-element biomechanical model of human fingertip. The predicted neural response of the mechanoreceptors, i.e. the computed strain energy density at the location of selected mechanoreceptors as a measure of neural discharge rate of the corresponding receptors, to local reduction of friction between fingerpad and surface are shown to exhibit a similar shape as the edge enhancement phenomenon, particularly in a sudden burst at the boundary of variable friction regions. This phenomenon is supposed to account for the illusion of virtual edges rendered through the modification of contact forces. The presence of this sudden burst under varied model parameters was investigated. It was shown that while the appearance of this phenomenon in simulation results was invariant to model parameters, associated alteration of the edge enhancement ratio might be considered for the purpose of the tuning of the variable friction tactile display.