Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
874543 | Journal of Biomechanics | 2007 | 9 Pages |
Cell adhesion to extracellular matrix components involves integrin binding, receptor clustering, and recruitment of cytoskeletal elements, leading to the formation of discrete adhesive structures (focal adhesions). A force balance, macroscopic-to-microscopic model of these adhesive events is presented in the context of experimentally measured parameters. Integrin bond force, bond numbers, and distribution along the contact area strongly modulated the resulting adhesive force. Furthermore, focal adhesion assembly enhanced adhesion strength by 30% over integrin clustering alone. Predicted values are in excellent agreement with experimental results. This model provides a simple framework to systematically analyze the contributions of different adhesive parameters to overall adhesion strength.