Article ID Journal Published Year Pages File Type
874686 Journal of Biomechanics 2006 10 Pages PDF
Abstract

Liquid jet injections have been performed on human skin in vivo and silicone rubber using Intraject needle-free injectors. The discharge characteristics of the liquid jet were measured using a custom-built test instrument. The experiments reveal that a high-speed liquid jet penetrates a soft solid by the formation and opening of a planar crack. The fluid stagnation pressure required for skin penetration decreases with increasing diameter of the liquid jet. These findings are consistent with the slow-speed penetration of a soft solid by a sharp-tipped punch. It is demonstrated that the Shergold–Fleck sharp-tipped punch penetration model [Shergold, O.A., Fleck, N.A., 2004. Mechanisms of deep penetration of soft solids. Proc. Roy. Soc. Lond. A 460, 3037–3058.] gives adequate predictions for the pressure required to penetrate a soft solid by a high-speed liquid jet.

Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , ,