Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8751362 | Virology | 2018 | 16 Pages |
Abstract
The six major epidemiologically important hepatitis C virus (HCV) genotypes differ in global distribution and antiviral responses. Full-length infectious cell-culture adapted clones, the gold standard for HCV studies in vitro, are missing for genotypes 4 and 5. To address this challenge for genotype 5, we constructed a consensus full-length clone of strain SA13 (SA13fl), which was found non-viable in Huh7.5 cells. Step-wise adaptation of SA13fl-based recombinants, beginning with a virus encoding the NS5B-thumb domain and 3´UTR of JFH1 (SA13/JF372-X), resulted in a high-titer SA13 virus with only 41 JFH1-encoded NS5B-thumb residues (SA13/JF470-510cc); this required sixteen cell-culture adaptive substitutions within the SA13fl polyprotein and two 3´UTR-changes. SA13/JF372-X and SA13/JF470-510cc were equally sensitive to nucleoside polymerase inhibitors, including sofosbuvir, but showed differential sensitivity to inhibitors targeting the NS5B palm or thumb. SA13/JF470-510cc represents a model to elucidate the influence of HCV RNA elements on viral replication and map determinants of sensitivity to polymerase inhibitors.
Keywords
Related Topics
Life Sciences
Immunology and Microbiology
Virology
Authors
Daryl Humes, Santseharay Ramirez, Tanja B. Jensen, Yi-Ping Li, Judith M. Gottwein, Jens Bukh,