Article ID Journal Published Year Pages File Type
8751453 Virology 2018 10 Pages PDF
Abstract
Mammalian reovirus viral factories (VFs) form filamentous or globular structures depending on the viral strain. In this study, we attempt to characterize the dynamics of both filamentous and globular VFs. Here, we present evidence demonstrating that globular VFs are dynamic entities coalescing between them, thereby gaining in size and concomitantly decreasing in numbers during the course of the infection. Additionally, both kinds of VFs condense into a perinuclear position. Our results show that globular VFs rely on an intact MT-network for dynamic motion, structural assembly, and maintenance and for perinuclear condensation. Interestingly, dynein localizes in both kinds of VFs, having a role at least in large globular VFs formation. To study filamentous VF dynamics, we used different transfection ratios of µNS with filamentous µ2. We found a MT-network dependency for VF-like structures perinuclear condensation. Also, µNS promotes VFLSs perinuclear positioning as well as an increase in acetylated tubulin levels.
Related Topics
Life Sciences Immunology and Microbiology Virology
Authors
, , ,