Article ID Journal Published Year Pages File Type
8751947 Virus Research 2018 36 Pages PDF
Abstract
The CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9) system has been widely used for viral genome editing, transcription regulation and chromosomal localization in eukaryotic cells. In this study, a guide RNA (gRNA) that specifically recognizes HSV-1 viral genomes was used in the CRISPR-Cas9 system to inhibit viral replication. This inhibition could be achieved with both wild type Cas9 protein and Cas9 nickase (D10A). By targeting viral genomes containing sequences recognized by the gRNA, the CRISPR-Cas9 system distinguished between different viral genome sequences and provided single nucleotide-specific selection pressure to significantly change the proportions of viruses in a mixed viral pool. This finding indicates the utility of this tool for virus selection without the need for antibiotics or reporter genes, which could potentially save time compared to other methods used for screening and purifying mutant viruses.
Related Topics
Life Sciences Immunology and Microbiology Virology
Authors
, , , , , , , ,