Article ID Journal Published Year Pages File Type
875635 Medical Engineering & Physics 2016 7 Pages PDF
Abstract

•Quantitatively defining the engineering requirements for colon assessment.•Identifying design constraints and geometrical specifications for robotic colon assessment.•Defining a robust methodology to obtain clinically-relevant quantitative metrics for colon geometry from a CT dataset.

This paper presents a method of characterizing the distribution of colorectal morphometrics. It uses three-dimensional region growing and topological thinning algorithms to determine and visualize the luminal volume and centreline of the colon, respectively. Total and segmental lengths, diameters, volumes, and tortuosity angles were then quantified. The effects of body orientations on these parameters were also examined. Variations in total length were predominately due to differences in the transverse colon and sigmoid segments, and did not significantly differ between body orientations. The diameter of the proximal colon was significantly larger than the distal colon, with the largest value at the ascending and cecum segments. The volume of the transverse colon was significantly the largest, while those of the descending colon and rectum were the smallest. The prone position showed a higher frequency of high angles and consequently found to be more torturous than the supine position. This study yielded a method for complete segmental measurements of healthy colorectal anatomy and its tortuosity. The transverse and sigmoid colons were the major determinant in tortuosity and morphometrics between body orientations. Quantitative understanding of these parameters may potentially help to facilitate colonoscopy techniques, accuracy of polyp spatial distribution detection, and design of novel endoscopic devices.

Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , , , ,