Article ID Journal Published Year Pages File Type
875919 Medical Engineering & Physics 2014 6 Pages PDF
Abstract

The morphology of the contact bearing surfaces plays an important role in the contact mechanics and potential wear of metal-on-metal (MOM) hip prostheses. An ellipsoidal bearing surface was proposed for MOM hip implants and the corresponding contact mechanics were studied by using the finite element method (FEM) under both standard and micro-lateralization conditions. When under micro-lateralization, the maximum contact pressure decreased from 927.3 MPa to 203.0 MPa, with increased ellipticity ratio medial-laterally. And the contact region was found to shift from the rim of the cup to the inner region compared to the spherical design. Under standard conditions, an increasing trend of the maximum contact pressure for the acetabular component was predicted as the major radius of the ellipsoidal bearing surface was increased. Nevertheless, the maximum contact pressure reached an asymptotic value when the ellipticity ratio was increased to 1.04. Therefore it is critical to optimize the ellipticity ratio in order to reduce the contact pressure under micro-lateralization condition and yet not to cause a markedly increased contact pressure under normal condition. Additionally, the maximum contact pressure in the ellipsoidal bearing surface remained relatively constant with the increased micro-lateralization. It is concluded that an ellipsoidal bearing surface morphology may be a promising alternative by offering better contact mechanisms when micro-lateralization should occur and attributing to minimized wear.

Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , , , ,