Article ID Journal Published Year Pages File Type
875973 Medical Engineering & Physics 2013 11 Pages PDF
Abstract

We present a novel approach for automatically, accurately and reliably determining the 3D motion of the cervical spine from a series of stereo or biplane radiographic images. These images could be acquired through a variety of different imaging hardware configurations. We follow a hierarchical, anatomically-aware, multi-bone approach that takes into account the complex structure of cervical vertebrae and inter-vertebrae overlapping, as well as the temporal coherence in the imaging series. These significant innovations improve the speed, accuracy, reliability and flexibility of the tracking process. Evaluation on cervical data shows that the approach is as accurate (average precision 0.3 mm and 1°) as the expert human-operator driven method that was previously state of the art. However, unlike the previously used method, the hierarchical approach is automatic and robust; even in the presence of implanted hardware. Therefore, the method has solid potential for clinical use to evaluate the effectiveness of surgical interventions.

Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , , ,