Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
876532 | Medical Engineering & Physics | 2009 | 10 Pages |
Needle insertion is performed in many clinical and therapeutic procedures. Tissue displacement and needle bending which result from needle–tissue interaction make accurate targeting difficult. For performing physicians to gain essential needle targeting skills, needle insertion simulators can be used for training. An accurate needle bending model is essential for such simulators. These bending models are also needed for needle path planning.In this paper, three different models are presented to simulate the deformations of a needle. The first two models use the finite element method and take the geometric nonlinearity into account. The third model is a series of rigid bars connected by angular springs. The models were compared to recorded deformations during experiments of applying lateral tip forces on a brachytherapy needle. The model parameters were identified and the simulation results were compared to the experimental data. The results show that the angular spring model, which is computationally the most efficient model, is also the most accurate in modeling the bending of the brachytherapy needle.