Article ID Journal Published Year Pages File Type
876928 Medical Engineering & Physics 2008 11 Pages PDF
Abstract

Typically in clinical practice, electromyographers use qualitative auditory and visual analysis of electromyographic (EMG) signals to help infer if a neuromuscular disorder is present and if it is neuropathic or myopathic. Quantitative EMG methods exist that can more accurately measure feature values but require qualitative interpretation of a large number of statistics. Electrophysiological characterization of a neuromuscular system can be improved through the quantitative interpretation of EMG statistics. The aim of the present study was to compare the accuracy of pattern discovery (PD) characterization of motor unit potentials (MUPs) to other classifiers commonly used in the medical field. In addition, a demonstration of PD's transparency is provided. The transparency of PD characterization is a result of observing statistically significant events known as patterns. Using clinical MUP data from normal subjects and patients with known neuropathic disorders, PD achieved an error rate of 30.3% versus 29.8% for a Naïve Bayes classifier, 30.1% for a Decision Tree and 29% for discriminant analysis. Similar results were found for simulated EMG data. PD characterization succeeded in interpreting the information extracted from MUPs and transforming it into knowledge that is consistent with the literature and that can be valuable for the capture and transparent expression of clinically useful knowledge.

Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , , ,