Article ID Journal Published Year Pages File Type
8773552 Kidney International 2007 10 Pages PDF
Abstract
Numerous reports on the molecular mechanism of atherogenesis indicate an increase in oxidative stress, formation of advanced glycoxidation end products (AGEs), chronic inflammation, and activated cellular response particularly in diabetic patients. To elucidate the initiating and early accelerating events this review will focus on the molecular causes of the induction of these stress factors, their interactions, and their contribution to atherogenesis. Metabolic factors such as elevated free fatty acids, high glucose levels or AGEs induce reactive oxygen species (ROS) in vascular cells leading to ongoing AGE formation and to gene induction of proinflammatory cytokines. Vice versa, numerous cytokines found elevated in obesity and diabetes may also induce oxidative stress thus a circulus vitious may be initiated and accelerated. Increased production of ROS, mainly from mitochondria and NAD(P)H oxidase, stimulates signaling cascades including protein kinase C and mitogen-activated protein kinase pathway leading to nuclear translocation of transcription factors such as nuclear factor-κB (NF-κB), activator protein 1, and specificity protein 1. Subsequently, the expression of numerous genes including cytokines is rapidly induced, which, in turn, may act on vascular cells promoting the deleterious effects. From animal models of accelerated atherosclerosis a causal role of NAD(P)H oxidase and the AGE/RAGE/NF-κB axis to atherogenesis is suggested. Because all factors involved form a highly interwoven network of interactions, the blockade of ROS or AGE formation at different sites may interrupt the vicious cycle. Promising candidate agents are, currently on trial. Most important to clinical practice, a number of drugs commonly used in the treatment of diabetes, hypertension, or cardiovascular disease, such as angiotensin-converting enzyme inhibitors, AT1 receptor blockers, 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors (statins), and thiazolidindiones have shown promising 'preventive' intracellular antioxidant activity in addition to their primary pharmacological actions.
Related Topics
Health Sciences Medicine and Dentistry Nephrology
Authors
, ,