Article ID Journal Published Year Pages File Type
878037 Nanomedicine: Nanotechnology, Biology and Medicine 2012 10 Pages PDF
Abstract

Epithelial-mesenchymal transition (EMT) is closely implicated in the pathogenesis of idiopathic pulmonary fibrosis. Associated with this phenotypic transition is the acquisition of an elongated cell morphology and establishment of stress fibers. The extent to which these EMT-associated changes influence cellular mechanics is unclear. We assessed the biomechanical properties of alveolar epithelial cells (A549) following exposure to TGF-β1. Using atomic force microscopy, changes in cell stiffness and surface membrane features were determined. Stimulation with TGF-β1 gave rise to a significant increase in stiffness, which was augmented by a collagen I matrix. Additionally, TGF-β1-treated cells exhibited a rougher surface profile with notable protrusions. Simultaneous quantitative examination of the morphological attributes of stimulated cells using an image-based high-content analysis system revealed dramatic alterations in cell shape, F-actin content and distribution. Together, these investigations point to a strong correlation between the cytoskeletal-associated cellular architecture and the mechanical dynamics of alveolar epithelial cells undergoing EMT.From the Clinical EditorEpithelial-mesenchymal transition is implicated in the pathogenesis of pulmonary fibrosis. Using atomic force microscopy, the authors demonstrate a strong correlation between the cytoskeletal-associated cellular architecture and the mechanical dynamics of alveolar epithelial cells undergoing mesenchymal transition.

Graphical AbstractTGF-β1 exposure affects F-actin content and the cytoskeletal architecture of alveolar epithelial cells in vitro.Figure optionsDownload full-size imageDownload high-quality image (172 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , , ,