Article ID Journal Published Year Pages File Type
8795347 Vision Research 2017 11 Pages PDF
Abstract
Normal binocular vision emerges from the combination of neural signals arising within separate monocular pathways. It is natural to wonder whether both eyes contribute equally to the unified cyclopean impression we ordinarily experience. Binocular rivalry, which occurs when the inputs to the two eyes are markedly different, affords a useful means for quantifying the balance of influence exerted by the eyes (called sensory eye dominance, SED) and for relating that degree of balance to other aspects of binocular visual function. However, the precise ways in which binocular rivalry dynamics change when the eyes are unbalanced remain uncharted. Relying on widespread individual variability in the relative predominance of the two eyes as demonstrated in previous studies, we found that an observer's overall tendency to see one eye more than the other was driven both by differences in the relative duration and frequency of instances of that eye's perceptual dominance. Specifically, larger imbalances between the eyes were associated with longer and more frequent periods of exclusive dominance for the stronger eye. Increases in occurrences of dominant eye percepts were mediated in part by a tendency to experience “return transitions” to the predominant eye - that is, observers often experienced sequential exclusive percepts of the dominant eye's image with an intervening mixed percept. Together, these results indicate that the often-observed imbalances between the eyes during binocular rivalry reflect true differences in sensory processing, a finding that has implications for our understanding of the mechanisms underlying binocular vision in general.
Related Topics
Life Sciences Neuroscience Sensory Systems
Authors
, , ,