Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8798501 | Gait & Posture | 2018 | 5 Pages |
Abstract
This study assessed the relationship between walking speed and common temporal-spatial stride-parameters to determine if a change in gait strategy occurs at extremely slow walking speeds. Stride-parameter models that represent slow walking can act as a reference for lower extremity exoskeleton and powered orthosis controls since these devices typically operate at walking speeds less than 0.4â¯m/s. Full-body motion capture data were collected from 30 health adults while walking on a self-paced treadmill, within a CAREN-Extended virtual reality environment. Kinematic data were collected for 0.2-0.8â¯m/s, and self-selected walking speed. Eight temporal stride-parameters were determined and their relationship to walking speed was assessed using linear and quadratic regression. Stride-length, step-length, and step-frequency were linearly related to walking speed, even at speeds below 0.4â¯m/s. An inflection point at 0.5â¯m/s was found for stride-time, step-time, stance-time, and double support time. Equations were defined for each stride-parameter, with equation outputs producing correlations greater than 0.91 with the test data. This inflection point suggests a change in gait strategy at very slow walking speeds favouring greater ground contact time.
Related Topics
Health Sciences
Medicine and Dentistry
Orthopedics, Sports Medicine and Rehabilitation
Authors
Andrew J.J. Smith, Edward D. Lemaire,