Article ID Journal Published Year Pages File Type
8838977 Brain Research Bulletin 2018 12 Pages PDF
Abstract
Central cholinergic systems regulate the hypothalamic-pituitary-adrenal (HPA) axis differentially in males and females (sexual diergism). We previously investigated the role of muscarinic receptors in this regulation by administering physostigmine (PHYSO), an acetylcholinesterase inhibitor, to male and female rats pretreated with scopolamine (SCOP), a nonselective muscarinic antagonist. SCOP pretreatment enhanced adrenocorticotropic hormone (ACTH) and corticosterone (CORT) responses in both sexes, but males had greater ACTH responses while females had greater CORT responses. In the present study, we further explored the role of muscarinic receptor subtypes in HPA axis regulation by administering PHYSO to male and female rats following SCOP or various doses of either the M1 or the M2 selective muscarinic receptor antagonists, pirenzepine (PIREN) or methoctramine (METHO). Blood was sampled before and at multiple times after PHYSO. ACTH and CORT were determined by highly specific immunoassays. M1 antagonism by PIREN prior to PHYSO resulted in sustained, dose-dependent increases in ACTH and CORT: ACTH responses were similar in both sexes, and CORT responses were greater in females. M2 antagonism by METHO prior to PHYSO resulted in overall decreases in ACTH and CORT: ACTH and CORT responses were higher in females but lower in both sexes than the hormone responses following PIREN or SCOP pretreatment. Area under the curve analyses supported these findings. These results suggest that specific muscarinic receptor subtypes differentially influence the HPA axis in a sexually diergic manner.
Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , , ,